Module pymskt.mesh.meshRegistration
Expand source code
import sys
import vtk
try:
import pyfocusr
except ModuleNotFoundError:
print('pyfocusr not found')
print('If you are not using the registration tools, you can ignore this message.')
print('install pyfocusr as described in the README: https://github.com/gattia/pymskt')
print('or visit the pyfocusr github repo: https://github.com/gattia/pyfocusr')
import numpy as np
def get_icp_transform(source, target, max_n_iter=1000, n_landmarks=1000, reg_mode='similarity'):
"""
Get the Interative Closest Point (ICP) transformation from the `source` mesh to the
`target` mesh.
Parameters
----------
source : vtk.vtkPolyData
Source mesh that we want to transform onto the target mesh.
target : vtk.vtkPolyData
Target mesh that we want to transform the source mesh onto.
max_n_iter : int, optional
Max number of iterations for the registration algorithm to perform, by default 1000
n_landmarks : int, optional
How many landmarks to sample when determining distance between meshes &
solving for the optimal transformation, by default 1000
reg_mode : str, optional
The type of registration to perform. The options are:
- 'rigid': true rigid, translation only
- 'similarity': rigid + equal scale
by default 'similarity'
Returns
-------
vtk.vtkIterativeClosestPointTransform
The actual transform object after running the registration.
"""
icp = vtk.vtkIterativeClosestPointTransform()
icp.SetSource(source)
icp.SetTarget(target)
if reg_mode == 'rigid':
icp.GetLandmarkTransform().SetModeToRigidBody()
elif reg_mode == 'similarity':
icp.GetLandmarkTransform().SetModeToSimilarity()
icp.SetMaximumNumberOfIterations(max_n_iter)
icp.StartByMatchingCentroidsOn()
icp.Modified()
icp.Update()
icp.SetMaximumNumberOfLandmarks(n_landmarks)
return icp
def non_rigidly_register(
target_mesh=None,
source_mesh=None,
final_pt_location='weighted_average', # 'weighted_average' or 'nearest_neighbour'
icp_register_first=True, # Get bones/objects into roughly the same alignment first
icp_registration_mode='similarity', # similarity = rigid + scaling (isotropic), ("rigid", "similarity", "affine")
icp_reg_target_to_source=True, # For shape models, the source is usually the reference so we want target in its space (true)
n_spectral_features=3,
n_extra_spectral=3, # For ensuring we have the right spec coords - determined using wasserstein distances.
target_eigenmap_as_reference=True,
get_weighted_spectral_coords=False,
list_features_to_calc=['curvature'], # 'curvature', min_curvature' 'max_curvature' (other features for registration)
use_features_as_coords=True, # During registraiton - do we want to use curvature etc.
rigid_reg_max_iterations=100,
non_rigid_alpha=0.01,
non_rigid_beta=50,
non_rigid_n_eigens=100, # number of eigens for low rank CPD registration
non_rigid_max_iterations=500,
rigid_before_non_rigid_reg=False, # This is of the spectral coordinates - not the x/y/z used in icp_register_first
projection_smooth_iterations=30, # Used for distributing registered points onto target surface - helps preserve diffeomorphism
graph_smoothing_iterations=300, # For smoothing the target mesh before final point correspondence
feature_smoothing_iterations=30, # how much should features (curvature) be smoothed before registration
include_points_as_features=False, # Do we want to incldue x/y/z positions in registration?
norm_physical_and_spectral=True, # set standardized mean and variance for each feature
feature_weights=np.diag([.1,.1]), # should we weight the extra features (curvature) more/less than spectral
n_coords_spectral_ordering=20000, # How many points on mesh to use for ordering spectral coordinates ()
n_coords_spectral_registration=1000, # How many points to use for spectral registrtaion (usually random subsample)
initial_correspondence_type='kd', # kd = nearest neightbor, hungarian = minimum cost of assigning between graphs (more compute heavy)
final_correspondence_type='kd' # kd = nearest neightbor, hungarian = minimum cost of assigning between graphs (more compute heavy)
):
if 'pyfocusr' not in sys.modules:
raise ModuleNotFoundError('pyfocusr is not installed & is necessary for non-rigid registration.')
if final_pt_location not in ['weighted_average', 'nearest_neighbour']:
raise Exception('Did not specify appropriate final_pt_location, must be either "weighted_average", or "nearest_neighbour"')
# Test if mesh is a vtk mesh, or a pymsky.Mesh object.
if isinstance(target_mesh, vtk.vtkPolyData):
vtk_mesh_target = target_mesh
else:
try:
vtk_mesh_target = target_mesh.mesh
except:
raise Exception(f'expected type vtk.vtkPolyData or pymskt.mesh.Mesh, got: {type(target_mesh)}')
if isinstance(source_mesh, vtk.vtkPolyData):
vtk_mesh_source = source_mesh
else:
try:
vtk_mesh_source = source_mesh.mesh
except:
raise Exception(f'expected type vtk.vtkPolyData or pymskt.mesh.Mesh, got: {type(target_mesh)}')
reg = pyfocusr.Focusr(
vtk_mesh_target=vtk_mesh_target,
vtk_mesh_source=vtk_mesh_source,
icp_register_first=icp_register_first,
icp_registration_mode=icp_registration_mode,
icp_reg_target_to_source=icp_reg_target_to_source,
n_spectral_features=n_spectral_features,
n_extra_spectral=n_extra_spectral,
target_eigenmap_as_reference=target_eigenmap_as_reference,
get_weighted_spectral_coords=get_weighted_spectral_coords,
list_features_to_calc=list_features_to_calc,
use_features_as_coords=use_features_as_coords,
rigid_reg_max_iterations=rigid_reg_max_iterations,
non_rigid_alpha=non_rigid_alpha,
non_rigid_beta=non_rigid_beta,
non_rigid_n_eigens=non_rigid_n_eigens,
non_rigid_max_iterations=non_rigid_max_iterations,
rigid_before_non_rigid_reg=rigid_before_non_rigid_reg,
projection_smooth_iterations=projection_smooth_iterations,
graph_smoothing_iterations=graph_smoothing_iterations,
feature_smoothing_iterations=feature_smoothing_iterations,
include_points_as_features=include_points_as_features,
norm_physical_and_spectral=norm_physical_and_spectral,
feature_weights=feature_weights,
n_coords_spectral_ordering=n_coords_spectral_ordering,
n_coords_spectral_registration=n_coords_spectral_registration,
initial_correspondence_type=initial_correspondence_type,
final_correspondence_type=final_correspondence_type
)
reg.align_maps()
if final_pt_location == 'weighted_average':
reg.get_source_mesh_transformed_weighted_avg()
mesh_transformed_to_target = reg.weighted_avg_transformed_mesh
elif final_pt_location == 'nearest_neighbour':
reg.get_source_mesh_transformed_nearest_neighbour()
mesh_transformed_to_target = reg.nearest_neighbour_transformed_mesh
return mesh_transformed_to_target
Functions
def get_icp_transform(source, target, max_n_iter=1000, n_landmarks=1000, reg_mode='similarity')
-
Get the Interative Closest Point (ICP) transformation from the
source
mesh to thetarget
mesh.Parameters
source
:vtk.vtkPolyData
- Source mesh that we want to transform onto the target mesh.
target
:vtk.vtkPolyData
- Target mesh that we want to transform the source mesh onto.
max_n_iter
:int
, optional- Max number of iterations for the registration algorithm to perform, by default 1000
n_landmarks
:int
, optional- How many landmarks to sample when determining distance between meshes & solving for the optimal transformation, by default 1000
reg_mode
:str
, optional- The type of registration to perform. The options are: - 'rigid': true rigid, translation only - 'similarity': rigid + equal scale by default 'similarity'
Returns
vtk.vtkIterativeClosestPointTransform
- The actual transform object after running the registration.
Expand source code
def get_icp_transform(source, target, max_n_iter=1000, n_landmarks=1000, reg_mode='similarity'): """ Get the Interative Closest Point (ICP) transformation from the `source` mesh to the `target` mesh. Parameters ---------- source : vtk.vtkPolyData Source mesh that we want to transform onto the target mesh. target : vtk.vtkPolyData Target mesh that we want to transform the source mesh onto. max_n_iter : int, optional Max number of iterations for the registration algorithm to perform, by default 1000 n_landmarks : int, optional How many landmarks to sample when determining distance between meshes & solving for the optimal transformation, by default 1000 reg_mode : str, optional The type of registration to perform. The options are: - 'rigid': true rigid, translation only - 'similarity': rigid + equal scale by default 'similarity' Returns ------- vtk.vtkIterativeClosestPointTransform The actual transform object after running the registration. """ icp = vtk.vtkIterativeClosestPointTransform() icp.SetSource(source) icp.SetTarget(target) if reg_mode == 'rigid': icp.GetLandmarkTransform().SetModeToRigidBody() elif reg_mode == 'similarity': icp.GetLandmarkTransform().SetModeToSimilarity() icp.SetMaximumNumberOfIterations(max_n_iter) icp.StartByMatchingCentroidsOn() icp.Modified() icp.Update() icp.SetMaximumNumberOfLandmarks(n_landmarks) return icp
def non_rigidly_register(target_mesh=None, source_mesh=None, final_pt_location='weighted_average', icp_register_first=True, icp_registration_mode='similarity', icp_reg_target_to_source=True, n_spectral_features=3, n_extra_spectral=3, target_eigenmap_as_reference=True, get_weighted_spectral_coords=False, list_features_to_calc=['curvature'], use_features_as_coords=True, rigid_reg_max_iterations=100, non_rigid_alpha=0.01, non_rigid_beta=50, non_rigid_n_eigens=100, non_rigid_max_iterations=500, rigid_before_non_rigid_reg=False, projection_smooth_iterations=30, graph_smoothing_iterations=300, feature_smoothing_iterations=30, include_points_as_features=False, norm_physical_and_spectral=True, feature_weights=array([[0.1, 0. ], [0. , 0.1]]), n_coords_spectral_ordering=20000, n_coords_spectral_registration=1000, initial_correspondence_type='kd', final_correspondence_type='kd')
-
Expand source code
def non_rigidly_register( target_mesh=None, source_mesh=None, final_pt_location='weighted_average', # 'weighted_average' or 'nearest_neighbour' icp_register_first=True, # Get bones/objects into roughly the same alignment first icp_registration_mode='similarity', # similarity = rigid + scaling (isotropic), ("rigid", "similarity", "affine") icp_reg_target_to_source=True, # For shape models, the source is usually the reference so we want target in its space (true) n_spectral_features=3, n_extra_spectral=3, # For ensuring we have the right spec coords - determined using wasserstein distances. target_eigenmap_as_reference=True, get_weighted_spectral_coords=False, list_features_to_calc=['curvature'], # 'curvature', min_curvature' 'max_curvature' (other features for registration) use_features_as_coords=True, # During registraiton - do we want to use curvature etc. rigid_reg_max_iterations=100, non_rigid_alpha=0.01, non_rigid_beta=50, non_rigid_n_eigens=100, # number of eigens for low rank CPD registration non_rigid_max_iterations=500, rigid_before_non_rigid_reg=False, # This is of the spectral coordinates - not the x/y/z used in icp_register_first projection_smooth_iterations=30, # Used for distributing registered points onto target surface - helps preserve diffeomorphism graph_smoothing_iterations=300, # For smoothing the target mesh before final point correspondence feature_smoothing_iterations=30, # how much should features (curvature) be smoothed before registration include_points_as_features=False, # Do we want to incldue x/y/z positions in registration? norm_physical_and_spectral=True, # set standardized mean and variance for each feature feature_weights=np.diag([.1,.1]), # should we weight the extra features (curvature) more/less than spectral n_coords_spectral_ordering=20000, # How many points on mesh to use for ordering spectral coordinates () n_coords_spectral_registration=1000, # How many points to use for spectral registrtaion (usually random subsample) initial_correspondence_type='kd', # kd = nearest neightbor, hungarian = minimum cost of assigning between graphs (more compute heavy) final_correspondence_type='kd' # kd = nearest neightbor, hungarian = minimum cost of assigning between graphs (more compute heavy) ): if 'pyfocusr' not in sys.modules: raise ModuleNotFoundError('pyfocusr is not installed & is necessary for non-rigid registration.') if final_pt_location not in ['weighted_average', 'nearest_neighbour']: raise Exception('Did not specify appropriate final_pt_location, must be either "weighted_average", or "nearest_neighbour"') # Test if mesh is a vtk mesh, or a pymsky.Mesh object. if isinstance(target_mesh, vtk.vtkPolyData): vtk_mesh_target = target_mesh else: try: vtk_mesh_target = target_mesh.mesh except: raise Exception(f'expected type vtk.vtkPolyData or pymskt.mesh.Mesh, got: {type(target_mesh)}') if isinstance(source_mesh, vtk.vtkPolyData): vtk_mesh_source = source_mesh else: try: vtk_mesh_source = source_mesh.mesh except: raise Exception(f'expected type vtk.vtkPolyData or pymskt.mesh.Mesh, got: {type(target_mesh)}') reg = pyfocusr.Focusr( vtk_mesh_target=vtk_mesh_target, vtk_mesh_source=vtk_mesh_source, icp_register_first=icp_register_first, icp_registration_mode=icp_registration_mode, icp_reg_target_to_source=icp_reg_target_to_source, n_spectral_features=n_spectral_features, n_extra_spectral=n_extra_spectral, target_eigenmap_as_reference=target_eigenmap_as_reference, get_weighted_spectral_coords=get_weighted_spectral_coords, list_features_to_calc=list_features_to_calc, use_features_as_coords=use_features_as_coords, rigid_reg_max_iterations=rigid_reg_max_iterations, non_rigid_alpha=non_rigid_alpha, non_rigid_beta=non_rigid_beta, non_rigid_n_eigens=non_rigid_n_eigens, non_rigid_max_iterations=non_rigid_max_iterations, rigid_before_non_rigid_reg=rigid_before_non_rigid_reg, projection_smooth_iterations=projection_smooth_iterations, graph_smoothing_iterations=graph_smoothing_iterations, feature_smoothing_iterations=feature_smoothing_iterations, include_points_as_features=include_points_as_features, norm_physical_and_spectral=norm_physical_and_spectral, feature_weights=feature_weights, n_coords_spectral_ordering=n_coords_spectral_ordering, n_coords_spectral_registration=n_coords_spectral_registration, initial_correspondence_type=initial_correspondence_type, final_correspondence_type=final_correspondence_type ) reg.align_maps() if final_pt_location == 'weighted_average': reg.get_source_mesh_transformed_weighted_avg() mesh_transformed_to_target = reg.weighted_avg_transformed_mesh elif final_pt_location == 'nearest_neighbour': reg.get_source_mesh_transformed_nearest_neighbour() mesh_transformed_to_target = reg.nearest_neighbour_transformed_mesh return mesh_transformed_to_target